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ABSTRACT 

A modal basis selection technique for a reduced-order nonlinear numerical simulation with 
application to two-dimensional structures is presented as a two-step procedure.  A system 
identification analysis is first performed using proper orthogonal decomposition.  Using these 
results, a set of load-invariant bases consisting of the normal modes is next selected.  Two 
criteria for making the basis selection are offered; one using the modal assurance criterion and 
the other using the modal expansion theorem.  The quality of the subsequent reduced-order 
analyses are examined through comparison with computationally intensive finite element 
nonlinear simulations in physical degrees-of-freedom.  A clamped flat isotropic plate under a 
random acoustic loading is considered to demonstrate the procedure.  It is found that the 
subject procedure enables formation of an accurate and computationally efficient reduced-
order system applicable to a broad range of loading conditions. 

1. INTRODUCTION 

Structural dynamic response analysis of complex aerospace components requires application 
of the finite element (FE) method.  Due to extreme loading conditions associated with high-
speed flight regimes, e.g. combined aerodynamic, acoustic, thermal, and mechanical loads, a 
large deflection nonlinear response analysis must often be considered.  Furthermore, the 
uncertainty of the loadings or their random characteristics may require extended simulation 
times to obtain statistically meaningful results.  Of the commercially available tools satisfying 
this analysis requirement, none do so in a computationally efficient manner.  In particular, the 
cost of a nonlinear FE analysis in physical degrees-of-freedom (DoFs) can easily become 
prohibitive.  Consequently, development of nonlinear reduced-order FE-based analyses is 
sought. 



 

The quality of any reduced-order analysis depends on the selection of the transformation 
basis functions.  An insufficient modal basis can yield inaccurate response predictions, which 
may lack essential response characteristics, e.g. autoparameteric resonance.  While it has been 
demonstrated that expansion of the modal basis can improve the quality of the reduced-order 
analysis predictions, excessive basis expansion diminishes its computational advantage.  
There exists, therefore, a strong incentive to determine a basis which will produce the desired 
accuracy, yet limit the associated computational expense.  Moreover, determination of a 
modal basis applicable over a broad range of response regimes is also advantageous to avoid 
repetition of the modal reduction process with each change in loading condition. 

In consideration of the above requirements, a procedure for a reliable and efficient modal 
basis selection is offered as a two-step process.  First, a proper orthogonal decomposition 
(POD) analysis [1-3] is conducted permitting identification of the dominant vibration 
characteristics of a system in terms of the proper orthogonal values (POVs) and their 
corresponding proper orthogonal modes (POMs).  The POD analysis can be based on a short, 
but representative, record of the nonlinear dynamic response.  Such data may be acquired 
from a test or, as in the present study, by performing a nonlinear FE simulation in physical 
DoFs.  If a single POD analysis is to be performed, it is imperative that it captures all the 
nonlinear dynamics of interest.  Therefore, analysis of the most severe loading condition 
under consideration is typically sought.  Since the POMs can change as the loading condition 
changes [4], they do not themselves form the preferred basis as the nonlinear modal basis 
transformation would potentially need to be repeated for each loading condition.  Instead, the 
second step in the procedure determines a set of load-invariant normal modes which resemble 
the selected set of POMs.  This process can alternatively be performed using the modal 
assurance criterion (MAC) [5] or the modal expansion theorem [6]. 

A POD/MAC modal basis selection technique was previously investigated by the authors 
on simple one-dimensional structures [7] and was found to be a reliable method to guide the 
selection of modal basis and improve the efficiency of the reduced-order analysis.  The 
objective of the present study is to investigate its applicability to more complex and larger 
two-dimensional structural members.  A clamped aluminum plate under a uniformly 
distributed random acoustic loading is chosen to demonstrate the approach. 

2. FORMULATION 

The system identification process by means of a POD analysis is next described and two 
alternative modal basis selection criteria employing the MAC and the modal expansion 
theorem are introduced.  The previously developed modal system reduction by an indirect 
nonlinear stiffness evaluation procedure [8, 9] is briefly summarized and the computational 
cost associated with it is quantified. 

2.1 System identification – Proper Orthogonal Decomposition 

When physical DoFs are chosen to characterize the response, the snapshot matrix  can be 
formed as an accumulation of n instantaneous displacement, velocity, or acceleration response 
fields.  In the current analysis, displacement fields, each containing a selected set of N 
degrees-of-freedom, are used resulting in a snapshot matrix of size n × N.  The sample rate 
and spatial resolution of the snapshot matrix must be sufficient to resolve the system’s 
temporal and spatial characteristics of interest.  The correlation matrix R , of size N × N is 
formed as 
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An eigenanalysis of the correlation matrix is next performed, i.e, 
 
 [ ]− =R λI p 0  (2) 
 
to obtain a POM matrix  and the diagonal POV matrix, , both of size 
N × N.  Each POV is a measure of the corresponding POM activity, i.e., the higher the POV, 
the greater the contribution of a corresponding POM to the dynamic response. 
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POMs obtained for an undamped linear system are identical to the normal modes [1, 2].  
For the problem of interest, i.e. flat or shallowly curved isotropic panels, the normal modes 
can be characterized as being either transverse-dominated or in-plane dominated.  Low 
frequency, transverse-dominated modes are those modes for which the maximum amplitude 
of the transverse displacement component is much larger than the maximum amplitude of the 
in-plane displacement component.  High frequency, in-plane dominated modes are those 
modes for which the maximum amplitude of the in-plane displacement component is much 
larger than the maximum amplitude of the transverse displacement component.  The POM 
matrix, however, is fully populated, creating an inherent mismatch between the POMs and the 
normal modes of the system under analysis.  This inconsistency can make the identification of 
normal modes similar to POMs difficult.  To mitigate this problem, the POD procedure is 
performed independently for each DoF type of interest by partitioning the snapshot matrix.  In 
the subsequent POD analyses, five out of six available DoF types, i.e., transverse 
displacement w, two in-plane displacements u and v, and two out-of-plane rotations xφ  and 

yφ , are analyzed.  The sixth DoF type, the rotation about the normal to the plate surface zφ , 
also called the drilling DoF, is not considered.  Because the drilling DoF is not included in all 
shell element formulations, it was not used in the present study to allow the procedure to be 
applicable to any shell element formulation.  By adopting this approach, the size of each 
individual DoF snapshot matrix  is reduced to n × m, where m is the number of nodes, and 
the size of each individual correlation matrix , POM matrix P , and POV matrix  is 
reduced to m × m. 

X
R λ

2.2 Modal basis selection 

The contribution of each POM to the overall dynamic response is given by 
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where iχ  is the i-th POM participation factor.  The sum of all POM participation factors is 
unity.  When the most contributing M POMs are selected, their cumulative participation, υ , 
can be expressed as 
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Retention of only the selected M POMs reduces the size of  to m x M. P



 

As previously indicated, the direct use of POMs for the basis is not preferred as they may 
be load specific.  Instead a set of normal modes which resemble the POMs is sought using one 
of the approaches next discussed. 
 
Modal Assurance Criterion 

An engineering measure of the similarity of two vectors is the MAC value [5].  By 
computing the MAC values for each pair of the selected POMs p  and all the normal modes 
φ , i.e., 
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the MAC matrix can be formed. 

Note that since each DoF is individually considered, separate MAC matrices for each DoF 
type are formed.  While the total number of normal mode vectors, N, is unaffected by 
partitioning, their lengths are reduced from N to m.  The MAC matrices therefore have the 
size of N × M for the five DoF types considered. 

Once the MAC matrices are determined, a MAC threshold level is used to identify the 
normal modes best resembling the selected POMs.  A threshold of  was used in 
this work.  A higher threshold value would identify fewer modes, generally leading to a less 
accurate but more computationally efficient solution.  A lower threshold value would identify 
a greater number of modes, leading to a more accurate but less computationally efficient 
solution. 
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The MAC-based normal modes selection approach, while straightforward to implement, 
may not always be sufficient.  In a strongly nonlinear response regime, it is not guaranteed 
that the POD analysis will yield POMs bearing much resemblance to the normal modes.  
Consequently, multiple normal modes may be required to represent a single POM.  This 
objective may be achieved by lowering the MAC threshold value, however, doing so may not 
be intuitive and the desired threshold may vary between different POMs.  Therefore, a more 
systematic approach is considered. 

 
Modal Expansion Theorem 

A single POM may be decomposed into a linear combination of normal modes according to 
the expansion theorem [6] 
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where  are the expansion coefficients.  Since the normal modes ijc φ  are orthogonal, i.e., 
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pre-multiplying Eq. (6) by  yields T

kφ
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The coefficient matrix  may be formed by evaluating Eq. S (8) over all selected POMs, 



 

( ) and over all normal modes (1,...,i = M N1,...,k = ), and may be written the compact form 
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Similar to MAC matrices, one S  matrix is formed for every DoF type and the size of each S  
matrix is N × M. 

Each column of  corresponds to a specific POM.  Because the POMs  used to compute 
the  matrix are not normalized, it is convenient to normalize each column of this matrix to 
unity so that a single threshold value can be used to identify the most significant normal 
modes.  In this work, those modes above a threshold value of 0.5 were included in the basis. 
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When Eq. (8) is squared and substituted into Eq. (5), the relationship between the MAC and 
expansion theorem approaches is established as   
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Despite the fact that the two approaches are similar in terms of the underlying theory, their 

functionality is not alike.  The MAC-based approach considers only the absolute measure of 
the similarity between a POM and a normal mode, as quantified by a MAC value.  The 
expansion theorem approach identifies a truncated set of the normal modes which linearly 
superpose to obtain the POM shape.  Consequently, the expansion theorem approach will 
always identify at least one normal mode for each POM irrespective of the threshold value, 
where the MAC-based approach may fail to identify any modes if the threshold value is too 
high.  Therefore, the number of selected POMs, M, and the number of identified normal 
modes generally differ. 

2.3 Nonlinear reduced-order analysis 

Once a set of basis functions is selected using one of the above approaches, the nonlinear 
modal reduction of the system can proceed.  A reduced-order method gains its computational 
advantage by reducing the size of the system in physical DoFs (full order) to a much smaller 
system expressed in generalized coordinates (reduced-order).  For the problem of interest, the 
equation of motion in physical DoFs can be expressed as 
 

( ( ) ( ) ( )) ( )t =Mx C f�� t t+ + NLx f x� t , (11) 
 
where  and C  are the structural mass and damping matrices, and , , and  are the 
physical displacement, nonlinear restoring force, and excitation force vectors, respectively.  
By applying the modal transformation 

x NLf fM

( ) ( )t =x Φq t , (12) 
 
the reduced-order equation of motion becomes 
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where  is a generalized coordinate vector and Φ  is a matrix containing L selected normal 
modes.  The modal nonlinear restoring force in Eq. 

q
(13) can be expressed as 
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When mass-normalized normal modes are used as the basis functions, the modal mass and 
damping matrices can be expressed as = = ⎡ ⎦TM Φ MΦ I�  and 2 r rζ ω= = ⎡ ⎦TC Φ CΦ� , where rω  
and rζ  are the undamped natural frequencies and the viscous damping factors, respectively.  

The modal excitation force vector is = TΦ ff . �
The system reduction utilized in this study is based on the indirect approach employing a 

nonlinear stiffness evaluation procedure [8, 9].  The procedure expresses the r-th component 
of the nonlinear modal restoring force vector as 
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where , , and  are the linear, quadratic, and cubic modal stiffness coefficients, and  is 
the number of selected modes.  Different combinations of scaled normal modes form a set of 
prescribed displacement fields.  The normal mode vectors are scaled by the generalized 
coordinates  to obtain physically meaningful magnitudes.  Using a nonlinear static FE 
analysis, the nonlinear restoring forces corresponding to each prescribed displacement field 
are computed in physical DoFs and transformed to the generalized coordinates per Eq. 

d a b L

q

f�
(14).  

As the vector  and the generalized coordinates  are known, Eq. NL q (15) constitutes a system 
of algebraic equations from which the linear, quadratic and cubic modal stiffness coefficients 
may be determined.   The number of unknown coefficients, and hence the number of 
nonlinear static solutions required for a transformation utilizing  modes is L
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Note that the three terms in Eq. (16) reflect the number of linear, quadratic, and cubic 

modal stiffness coefficients, respectively.  The number of nonlinear static solutions can be 
viewed as a measure of the fixed cost of the reduced-order analysis, as the modal reduction 
must be performed regardless of the simulated response time to be eventually computed. 

3. RESULTS 

The flat plate under investigation measured 355.6 × 254.0 × 1.016 mm and had fully clamped 
boundary conditions on all four edges.  Isotropic material properties for aluminum were used: 
Young modulus E = 73.11 GPa, shear modulus G = 27.59 GPa, and mass density 
ρ  = 2763 kg/m3. 

The ABAQUS FE model used for both the physical DoF analysis and the normal modes 
analysis consisted of 8960 ABAQUS S4R shell elements, each measuring 3.175 × 3.175 mm.  
The S4R is a quadrilateral element with a large strain formulation and incorporates first order 



 

shear deformation theory.  Each element has four nodes, each with 6 DoFs, resulting in a 
system size of approximately 55,000 DoFs.  The origin of the global coordinate system was 
collocated with the lower left corner of the plate so that the x-axis was aligned with the longer 
plane edge, and the y-axis was aligned with the shorter plane edge.  A fixed modal damping 
value of 14.66 s-1 was applied in the dynamic response analysis giving a 1.07% critical 
damping for the fundamental mode at 109.34 Hz. 

3.1 Nonlinear system identification and modal reduction 

The nonlinear response analysis of the plate in physical DoFs was performed via explicit 
integration using the ABAQUS/Explicit FE code.  An automatically determined integration 
time step, referenced in ABAQUS documentation as ‘element-by-element,’ was used.  This 
approach is known to yield a conservative integration time step [10]. 

The plate was subjected to a uniformly distributed normal acoustic loading.  Band-limited 
random acoustic loading with a flat frequency distribution was generated by summing equal 
amplitude sine waves, each with random phase, at a frequency resolution of 0.61 Hz in the 
frequency range 0 – 1024 Hz.  An overall sound pressure level (OASPL) of 154 dB (re: 
20 μPa) was applied.  The total simulation time for the POD analysis was 1.0 s.  The initial 
0.5 s containing the transient response was removed, leaving 0.5 s of fully developed response 
for the POD analysis.  A total of n = 10,000 displacement field snapshots at an output 
sampling rate of 50 μs were captured at every forth node in both x and y coordinate directions.  
The spatial resolution of the output data for each of the five DoF types was therefore 
12.7 mm, and the number of output nodes was m = 609.  The selected simulation time and the 
chosen resolution of the temporal and spatial outputs provided sufficient data for the POD 
analysis while keeping the required output volume reasonable.  Each of the five snapshot 
matrices were of size of 10,000 × 609, resulting in five correlation matrices each of size of 
609 × 609. 

The normal mode analysis of the plate was performed using the ABAQUS/Standard FE 
code.  The subspace solver was used to compute all mass-normalized normal modes present 
within a 50 kHz bandwidth.  Five displacement components were output at each node.  To be 
consistent with the POD analysis, only every fourth node was utilized in the modal basis 
identification process.  However, all DoFs were used in the solution of the modal stiffness 
coefficient for the subsequent reduced-order analysis.  A list of modes relevant to the basis 
selection is presented in the shaded cells of Table 1. 

3.2 Selected modal bases 

MAC- and expansion theorem-based approaches 
The POVs and corresponding POMs were computed individually for the five DoF types per 
Eq. (2).  This enabled subsequent computation of the POV participations per Eq. (3) by which 
each group of POMs was arranged in a descending order.  For each DoF type, the 16 POMs 
with the largest POV participations were considered.  For the selected set of POMs, the 
cumulative POV participation factors were computed per Eq. (4).  These factors for the 
transverse displacement w, x- and y-direction in-plane displacements u and v, and the rotations  
about the x and y axes xφ  and yφ , were found to be 99.98, 99.74, 99.78, 99.84, and 99.63%, 
respectively.  Next, the MAC-based and the expansion theorem-based mode selection criteria 
were considered.  The normal modes with MAC values of 0.5 or greater were identified per 
Eq. (5) and the expansion coefficients  of value 0.5 or greater (after normalization) were 
identified per Eq. 

S
(9). 

 



 

Table 1: Selected eigenanalysis and basis selection results 
 

Transverse Modes T Bases T+I Bases In-plane Modes T+I Bases 
Mode 

Number 
Frequenc

y (Hz) 
6 

(6T) 
16 

(16T) 
MAC 

(16T + 7I) 
Exp. 

(16T + 19I) 
Mode 

Number 
Frequency 

(Hz) 
MAC 

(16T + 7I) 
Exp. 

(16T + 19I) 

1 109.3 + + + + 391 15,603 + + 
4 290.2 + + + + 520 20,448 + + 
8 494.1 + + + + 558 21,917 + + 

11 641.7 + + + + 634 24,902 + + 
12 657.7 + + + + 708 27,912 + + 
19 991.1 + + + + 785 30,812 + + 
22 1156.0  + + + 834 32,736  + 
23 1194.0  + + + 862 33,667  + 
28 1352.9  + + + 895 34,639  + 
30 1493.5  + + + 991 38,971  + 
35 1675.5  + + + 1012 39,515  + 
40 1833.3  + + + 1098 42,830  + 
46 2162.0  + + + 1099 42,945 + + 
47 2165.9  + + + 1136 44,300  + 
48 2212.5  + + + 1173 45,876  + 
59 2675.8  + + + 1179 46,078  + 

      1206 47,085  + 
      1234 48,405  + 
      1257 49,158  + 

 
Both the MAC and the expansion theorem selection approaches identified the same set of 

16 transverse (T) displacement normal modes, as shown in columns 5 and 6 of Table 1.  The 
same set of normal modes was obtained when considering either the w, xφ  or yφ  DoFs.  The 
results of the selection process differed, however, between the two approaches when the u and 
v in-plane displacements were considered.  Recall that the objective was to identify a set of 
normal modes resembling the most contributing 16 u and 16 v POMs.  The MAC-based 
approach, however, was able to identify an in-plane modal basis corresponding to only the 
first three u and first five v POMs.  This basis consisted of seven in-plane modes, see column 
9 of Table 1.   For u in-plane POMs, there were no normal modes exceeding the MAC 
threshold for POM number 4 and higher.  For the v in-plane POMs, normal modes exceeding 
the MAC threshold were identified for POMs 1-5, 7 and 12.  However, since POM number 6 
has a greater participation than POM number 7, and since POM numbers 8-11 have greater 
participation than POM number 12, the basis was selected by restricting the set identified to 
the highest consecutive ranking, i.e. POM numbers 1-5. Representing only the first three u 
and the first five v POMs reduced the cumulative POV participation from 99.74 to 89.61% 
and from 99.78 to 97.01% for the u and v DoF types, respectively.  The expansion theorem-
based approach resulted in the identification of the u and v in-plane displacement basis 
consisting of 19 in-plane (I) modes, i.e., see column 10 of Table 1.  The expansion theorem 
approach, by design, represented all of the selected u and v in-plane POMs with at least one 
normal mode.  Consequently, the MAC-derived basis consisted of 23 normal modes (16 T + 7 
I), and the expansion theorem-derived basis consisted of 35 normal modes (16 T + 19 I).  As 
intended and expected, for the parameters considered in both approaches, the expansion 
theorem-based selection method resulted in identification of a larger set of normal modes.  
Note that the 7 in-plane modes identified by MAC-based approach are the subset of the 19 in-
plane modes identified by the expansion theorem-based approach. 

 



 

To illustrate how the results of the MAC-based and the expansion theorem-based 
approaches differ, the most contributing v in-plane POM is presented in Figure 1(a).  The 
MAC-based approach identified normal modes 391, Figure 1(b), and 520, Figure 1(c), to 
represent this POM.  The expansion theorem-based approach additionally identified mode 
558, Figure 1(d), which has the MAC value lower than 0.5. 

 

(a) (b) (c) (d) 

Figure 1.  v in-plane displacement: (a) POM number 1; (b) mode 391, MAC=0.61, exp. coeff.
s=-0.91; (c) mode 520, MAC=0.84, s=1.00; (d) mode 558, MAC=0.33, s=0.78. 

 
Finally, it is worthwhile to note that all the transverse displacement POMs and the 

identified transverse displacement normal modes had symmetric displacement distributions.  
All the in-plane displacement POMs and the identified in-plane displacement normal modes 
had anti-symmetric distributions simultaneously in both x- and y-directions. 
 
Traditional approaches 

The traditional approach of selecting a modal basis by neglecting the high-frequency in-
plane behavior was undertaken for comparative purposes.  Considering the structural 
symmetry and the excitation bandwidth, the lowest symmetric transverse displacement modes 
with natural frequencies up to 1024 Hz were selected.  This resulted in the basis shown in 
column 3 of Table 1.  Any difference between results obtained using the traditional 6-mode T 
basis and either of the T+I mode bases may be attributed to two factors: 1) the lack of high-
frequency in-plane modes in the basis, and 2) the lack of low-frequency transverse modes 
beyond the excitation bandwidth.  The help discriminate these effects, an additional basis 
consisting of all 16 transverse displacement modes included in the MAC- and the expansion 
theorem-selected bases was considered, see column 4 in Table 1. 

 
Computational cost of modal reduction 
When assessing the quality of results subsequently presented, it is important to bear in mind 
the computational effort required.  While any of the presented reduced-order solutions 
obtained with 6, 16, 23, or 35 generalized coordinates require significantly less computational 
effort than the analysis in physical coordinates, the differences between them vary markedly.  
The required number of nonlinear static solutions for the above bases is 83, 968, 2599, and 
8435, respectively.  Therefore, the reduced-order solution with the highest fidelity (35 mode 
basis) is over 100 times more expensive than the one with the lowest fidelity (6 mode basis). 

3.3 Nonlinear modal simulation 

The ABAQUS-based implementation of the computer code RANSTEP [7, 9] was used to 
assess the quality of the reduced-order analyses performed using the various bases identified 
in Table 1.  The assessment was carried out by comparing the displacement and stress 
response power spectral densities (PSDs) obtained from the reduced-order analyses with those 
obtained from the physical DoFs analyses.  The simulation in physical DoFs was conducted as 



 

previously described, but with the total simulation time extended to 2.1384 s.  After removing 
the initial 0.5 s transient, the fully developed response of 1.6384 s duration was used to 
compute the PSDs, each with a frequency resolution of 0.61 Hz.  The reduced-order nonlinear 
system was integrated using a 4th order Runge-Kutta scheme with a fixed time step of 1 μs.  
For the reduced-order analyses, the simulation duration, output sampling, and post-processing 
were the same as those used in the physical DoF analyses. 
 
Displacement results 
All displacement results presented herein were obtained at the quarter-quarter span location, 
i.e., at the (88.9, 63.5) mm coordinate node.  The choice of this location was made because of 
a desire to scrutinize both transverse and in-plane displacement components.  Since the 23- 
and 35-mode bases included only anti-symmetric in-plane modes, interrogation of the center 
point response would always produce a zero-valued in-plane displacement response. 

The displacement results obtained at a low excitation level of 106 dB OASPL are presented 
in Figure 2 and Figure 3 for the transverse displacement w and in Figure 4 for the in-plane 
displacement u.  All transverse displacement results are in a very good agreement with those 
obtained in physical DoFs.  While the reduced-order solutions with 16, 23, and 35 modes 
appear identical, there exists a very minor difference in the 6-mode basis results above 
700 Hz.  The difference, despite being inconsequential to the overall response, points to the 
importance of including the low-frequency transverse modes present beyond the excitation 
bandwidth.  The in-plane displacement solution offers a different perspective.  Due to the lack 
of in-plane displacement representation, the 6- and 16-mode bases are unable to produce any 
displacement response.  As seen in Figure 4, the 35-mode basis matches the physical DoFs 
solution better than does the 23-mode basis.  This result is expected since the 35-mode basis 
contains 19 in-plane modes, and the 23-mode basis contains only 7 in-plane modes.  A more 
significant observation, however, is that the in-plane displacement results require more 
normal modes than the transverse displacement results to obtain comparable performance 
relative to the physical DoFs solution.  This fact is indicated, for example, by the difference 
seen between the physical DoFs solution and the 35-mode basis solution in the neighborhood 
of 200 Hz.  It is also important to note that the nonlinear modal reductions performed using 
the T+I bases are applicable in this nearly linear response regime, even though the POD 
analysis used in their selection was performed at a highly nonlinear level of 154 dB. 

When the u in-plane displacement PSD is examined at the 154 dB excitation level, the in-
plane response obtained with the 35-mode basis also compares better with the physical DoFs 
solution than the 23-mode basis, as shown in Figure 5.  The overall comparison of results 
obtained with these two bases relative to the physical DoFs solution is, however, less 
favorable when compared with the 106 dB excitation level results.  The quality of the 
transverse displacement w PSD results at this level can be clearly classified into two groups.  
The 6- and 16-mode T bases without the in-plane displacement representation, shown in 
Figure 6, perform visibly worse when compared to the 23- and 35-mode T+I bases with the 
in-plane displacement representation, shown in Figure 7.  In particular, the transverse 
displacement solutions obtained with the 6- and 16-mode T bases show excessive peak 
broadening and shifting towards the higher frequencies.  Differences between the 6- and 16-
mode T bases, and differences between the 23- and 35-mode T+I bases, however, are 
relatively insignificant.  Therefore, contrary to the 106 dB excitation level case, accurate 
modeling of the in-plane displacement response strongly influences the quality of the 
transverse displacement response in the nonlinear response regime. 
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Figure 2.  Transverse displacement w PSD 

at 106 dB (6- and 16-mode T bases). 
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Figure 3. Transverse displacement w PSD 
at 106 dB (23- and 35-mode T+I bases). 
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Figure 4.  In-plane displacement u PSD at 

106 dB (23- and 35-mode T+I bases). 
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Figure 5.  In-plane displacement u PSD at 

154 dB (23- and 35-mode T+I bases). 
 
Stress results 
The normal stress yyσ  at the boundary of the longer edge mid-span was next investigated.  
Because the S4R element has only one integration point at its center, the stress response was 
recovered at the element center nearest to this point, located at (176.213, 1.588) mm. 

Figure 8 and Figure 9 show the stress PSD results at the 106 dB excitation level obtained 
with 6- and 16-mode T bases, and with the 23- and 35-mode T+I bases, respectively.  Since 
the transverse displacement response component almost exclusively dictates the stress 
response in this nearly linear response regime, the comparison with the physical DoFs 
solution is very good for all bases considered.  While all four solutions do not perfectly 
capture the anti-resonant behavior in the bandwidth approximately from 650 to 950 Hz, the 
differences are insignificant relative to the overall stress response.  The most pronounced 
difference in this frequency bandwidth, however, is noticed in the 6-mode T basis, which 
again is attributable to the lack of low-frequency transverse modes beyond the excitation 
bandwidth. 
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Figure 6.  Transverse displacement w PSD 

at 154 dB (6- and 16-mode T bases). 
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Figure 7.  Transverse displacement w PSD 
at 154 dB (23- and 35-mode T+I bases). 
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Figure 8. Normal stress yyσ  PSD at 106 dB 

(6- and 16-mode T bases). 
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Figure 9. Normal stress yyσ  PSD at 106 dB 

(23- and 35-mode T+I bases). 

 
As the excitation level is increased to 136 dB, the response becomes moderately nonlinear, 

as presented in Figure 10 and Figure 11.  At this response level, it is apparent that inclusion of 
the in-plane displacement normal modes in the basis has a beneficial effect on the quality of 
the computed stress response.  The results obtained with the 6- and the 16-mode T basis show 
only small differences between themselves, but show excessive broadening of the peaks 
relative to the physical DoF solution above approximately 500 Hz.  This behavior is not found 
in the stress response computed with the 23- or the 35-mode T+I basis.  While the differences 
between the 23- and the 35-mode T+I basis become locally distinguishable at this response 
level, they can be considered to be very minor. 
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Figure 10. Normal stress yyσ  PSD at 
136 dB (6- and 16-mode T bases). 
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Figure 11. Normal stress yyσ  PSD at 
136 dB (23- and 35-mode T+I bases). 

 
Results for the strongly nonlinear response at the 154 dB excitation level, originally used to 

perform the POD, are presented in Figure 12 and Figure 13.  Differences noted in the response 
at 136 dB are further exaggerated at this level.  Both the 6- and 16-mode T basis solutions 
show excessive peak broadening and shifting of the first peak to higher frequencies.  
Subsequent peaks are indistinguishable.  Again, differences between the 6- and the 16-mode T 
basis solutions are not significant.  The quality of the solutions obtained with the 23- and the 
35-mode T+I bases are substantially better.  In particular, the magnitude of the first peak is 
captured more accurately and shows almost no excessive shifting or broadening.  While 
excessive shifting and broadening of the second and the third peak is present, these two peaks 
are readily identifiable and can easily be related to the features of the physical DoFs response.  
The relative quality of the 23- and the 35-mode T+I basis solutions are comparable, with the 
35-mode solution being slightly more accurate in the mid-frequency range. 
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Figure 12. Normal stress yyσ  PSD at 
154 dB (6- and 16-mode T bases). 
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Figure 13. Normal stress yyσ  at 154 dB 

(23- and 35-mode T+I bases). 
 

 



 

4. CONCLUDING REMARKS 

Two criteria for selecting modal bases for use in a finite element nonlinear reduced-order 
analysis were presented.  Both enable formation of an accurate and computationally efficient 
reduced-order system applicable to a broad range of loading conditions.  Each relies on a 
system identification step using a POD analysis of the displacement response obtained by a 
finite element nonlinear simulation in physical DoFs.  The previously implemented criterion 
for correlating the POMs with the normal modes using the MAC was complemented by an 
alternative criterion employing the modal expansion theorem.  Application of both criteria to 
a two-dimensional structure demonstrated their suitability to structures with a greater modal 
density than previously considered.  For the case studied and analysis parameters selected, the 
expansion theorem approach resulted in a slight quality improvement over the MAC 
approach, relative to the finite element nonlinear simulation in physical DoFs.  This 
improvement came, however, at a significant increase in the computational expense.  The two 
methods merit further investigation on a broader sample of structures with a broader set of 
selection parameters.  In general, formation of the modal basis for a nonlinear response 
analysis was determined to be more challenging with regard to the in-plane displacement 
modeling than it was for the transverse displacement modeling. 
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